learn

Understanding Bike Frame Materials

Which Material is Right for you?

It depends. Many factors—your style of riding, your weight, your sense of adventure—all play a role in your choice of material. The following paragraphs explain the different types of material common to most bikes. A few bikes out there are made of exotic metals, but that's another discussion entirely.

Carbon (High-Tensile) Steel
Steel is the most commonly used material in bike frames. Carbon or high-tensile steel is a good, strong, long-lasting steel, but it isn't as light as its more high-tech brother, the steel known as chromoly.

Chromoly (Chrome Molybdenum) Steel
The workhorse of the industry, chromoly is a light, strong steel. When it is butted and shaped to take off excess weight, it can deliver a fairly light frame that will last through years of hard use. Chromoly is responsive and offers good flex while maintaining its form.

Aluminum
Having come a long way from the oversized tubes of the '80s, aluminum is now less expensive and very widely used on today's bikes. It's light, strong and stiff. With proper design it can give a solid ride for climbing, or lively handling in tight situations.

Titanium
Lighter than steel but just as strong, this expensive metal is found on high-end road or cross-country mountain bikes. It flexes so well while maintaining its shape that some very high-end bikes use the metal itself as a shock absorber.

Carbon Fiber
Take a bundle of parallel continuous fibers and bind them together with glue. This creates a ply. Several plies are made up to form a laminate (just like plywood). And the laminate, if designed right, can be very tough. It's also light. So why aren't all bikes made out of carbon fiber? It tends to be brittle. The fact that metal can bend and regain its shape is what makes it last. Because of this, carbon fiber bikes are built even stronger than needed.

What to look for in a frame?

Manufacturing processes and market trends continue to literally shape the bicycle frame. While not as common as it used to be, the process of butting is still used in the manufacture of bicycle frames. Meanwhile, steel, the long-running workhorse, is being replaced more and more by aluminum—its hardy cousin that grows less expensive every year. So what do you look for in a frame? Is next year's frame necessarily better than this year's?

Weight
Striving to shave precious grams from frame designs, manufacturers have employed all sorts of exotic metals and methods. Essentially, though, what you pay for is inversely proportional to the weight of your bike. The more you pay, the less it weighs.

Geometry
In theory, aggressive angles lead to aggressive ride characteristics. Relaxed angles lead to more casual ride characteristics. Which is best for you? The answer really depends on how much time you spend in the saddle. If you ride a lot and aren't interested in attacking the road or trail, go for a relaxed geometry of about 71 degrees on the head tube. For example, most Town & Trail bikes have a mid-range geometry of 72 degrees. The range goes from about 70 degrees to 74 degrees.

Plain-Gauge Tubing
Even with advances in materials, manufacturing processes and design, the best frame tubing for the buck is plain-gauge. These are tubes that don't rely on butting (see below) or oversizing or exotic blends, but are straight and strong and easy to manufacture. As a consequence they are cheaper. Those who are "serious" about cycling may point out that plain-gauge tubes weigh more than butted tubes. This is true, but the difference is sometimes only a matter of three or four pounds. If you're just out enjoying the town or trail and not attacking mountains, then this weight difference is of no consequence.

Butting
The goal of any good bike manufacturer is to put the material where you need it. And you need the material where the bike frame undergoes the most stress—at each end of the various tubes. This process is known as butting.

Internal Butting—Looking at the tube, you won't notice butting because it's hidden within the tube. So how do you know if the bike is butted? Bike manufacturers will certainly tell you, as it's a big selling point.

External Butting—The older, more expensive way is to add material onto the outside of the tube. This is rarely done anymore. However, you sometimes will see an extended weld. (See below.)


There are two methods used to butt a frame tube.

Double Butting—As the tube is shaped, extra material is allowed internally at each end of the tube. By increasing these areas of the tube, the overall tube wall thickness can be reduced, thus saving weight.

Triple Butting—To save even more weight, the double butting process is refined by stepping down the material at the ends of the tube. This means the butting starts out in the standard, double-butted manner but then is thinned before stepping down again to the normal tube wall thickness. In a cutaway, the inside of the tube looks like three terraced rice paddies on a hillside.

Welding
There are essentially three ways to join frame tubes:

  • Weld them using the same material as the tube (TIG welding).
  • Braze the tubes together using silver or brass.
  • Use lugs to join the tubes.

Each method has its proponents, yet nearly all but the very high-end bikes use the TIG welding method. This approach is relatively inexpensive and creates a good, solid weld. However, look closely at a bike's welds. You'll see that quality bikes offer a thick, even weld that goes around the entire tube. On department store bikes the welds are thin and spotty, dabbed down generally on the top, bottom and sides, but leaving open areas in between.

Extended Welds—One inexpensive way of adding material to the end of a tube is to simply add welding material. Generally, this is an elliptical circle or a double line extending from the joint to about an inch or so down the tube where it fades out. What's the problem with this method? The heat used in this process can actually weaken the tube. After welding, manufacturers will again heat-treat the entire tube—baking it, essentially—to bring the metal back up to par. While effective, this is a less substantial method than actually building the butting while the tube is being drawn out.

What other factors to consider?

How Long Are You Going to Keep Your Bike?
Steel will oxidize (rust) faster than aluminum. However, steel can take more stress over the long run than aluminum. Which is better? If you live in a wet climate, aluminum may be the better choice. Dry climate? You can get by with steel.

How Much Do You Weigh?
If you go above the 170-pound mark, whether through big bones or Big Macs, you'll want a bike with a higher strength. This may take an added pound of frame weight to achieve, but it's worth it in the long run. Also, steel and titanium are generally better for bigger riders due to something called elongation. They can flex more without breaking.

Is Money a Factor?
Though aluminum and titanium have come down in price, steel is still the least expensive metal. But since most cyclists like the lighter weight of aluminum or carbon fiber, manufactures are creating bikes that are aluminum or carbon fiber and more affordable. Titanium? Still expensive.

© 2002 GayOutdoors.com; All Rights Reserved.

Hiking, backpacking, camping or vacation adventures, GayOutdoors [GO] has been the LGBTQ outdoorzy community leader for the last 22 years. We are an informal group of diverse hiking enthusiasts in the United States with a shared love of the mountains who prefer hiking with friends. We invite you to join us on our hikes, to post hikes for other members to join you and to share your hiking photos, stories and advice.

Become A Member

If you find it invigorating to hike along a mountain trail with friends not knowing what’s just around the corner, to get some fresh air, to stop and soak in the views on a summit, and to soak your feet in a mountain brook after a hike, give us a try!

BECOME A MEMBER







Powered by Ecomsolutions.net - ColdFusion Experts